Cold plasma for cool applications

Cold atmospheric plasma is adaptable – also for your particular area of application

Medical technology

Hygiene

Water treatment

Odour management

Air purification

Medical technology

In the field of medical technology, we unite our cold plasma technology with medical expertise of physicians, qualified nurses and other healthcare professionals to find new solutions for the treatment, nursing, rehabilitation and improvement of sick or even healthy individuals. Important topics are listed below:

Yes. Up to now, no bacterial specie was found, which possesses resistance against cold atmospheric plasma.

Yes. Cold plasma inactivates bacteria regardless of their level of resistance against antibiotics. We were able to demonstrate the inactivation of MRSA (Methicillin-resistant Staphylococcus aureus) to the same extent as, for example, Escherichia coli, Pseudomonas aeruginosa or Streptococcus agalactiae.

Basically, yes – however, the plasma source has to be designed accordingly in order to not change or damage the surface to treat.

No. However, the plasma source has to be designed appropriately. In our subsidiary, terraplasma medical, a professional cold plasma device for wound treatment (medical device class IIa) – the so-called plasma care® has been developed. Preclinical studies prove no negative effects on keratinocytes, fibroblasts and human tissue due to plasma exposure.

Yes. Studies on thermolabile equipment confirm that a reduction by 99.9999% of e.g. Geobacillus stearothermophilus spores can be obtained within a short treatment time of a few minutes.

Cold atmospheric plasma generates gaseous plasma species, which are perfectly able to reach fine tubes and cavities using a suitable flow. Thus, even in hard-to-access areas, disinfection or sterilization is feasible. In cooperation with an external service provider a reduction of 99.9999% of Enterococcus faecium in fine tubes and cavities of various dental instruments was already validated.

Hygiene

As early as 1911, Max Rubner defined hygiene as “the conscious avoidance of all dangers threatening health and the exercise of health-enhancing actions” (Helmut Siefert: Hygiene, In: Encyclopaedia of Medical History, 2005, p. 647). Thus, prevention and control of contagious diseases and the spread of bacteria is a central mission in the field of hygiene. Due to the continuous increase of multidrug-resistant germs we are nevertheless currently lacking methods and active ingredients against bacteria. Therefore, hygiene remains a hot topic. terraplasma has identified this need and offers solutions for solving this problem using cold atmospheric plasma:

Cold atmospheric plasma can be applied wherever microorganisms and/or odours are the cause of hygienic problems, e.g. in washing machines, dishwashers or on cleaning items such as cleaning rags, toothbrushes, etc. Depending on the intended application either a gaseous plasma or plasma activated water can be used.

Plasma activated water (PAW) can be produced with energy, ambient air and tap water. To produce bactericidal plasma activated water, the plasma species – produced in the air – have to be dissolved into the water. After a certain time period, the plasma species in the water recombine, leaving the water with drinking water quality.

Yes and no. Plasma activated water (PAW), which contains mainly dissolved nitrogen species (N-mode with increased number of nitrogen species, reduced number of oxygen species) remains active for up to 7 days. PAW focusing on the more bactericidal oxygen species (O-mode with increased number of oxygen species, reduced number of nitrogen species) is only active for a short time period (up to a maximum of 20 minutes). “Active” must be understood in the sense of the ability to demonstrate a significant bactericidal reduction of up to 99.9999% in the specified time window.

Water treatment

“Drinking water is our most important food source and cannot be replaced by anything else.” This guiding principle of the norm DIN 2000 on central drinking water supply emphases the need of protecting water for our society. This includes the economical consumption of clean drinking water as well as the treatment of contaminated water in order to produce drinking water quality.

With our cold plasma technology, we offer innovative solutions:

Yes. Plasma species produced in air can be dissolved in water and are able to inactivate bacteria and viruses within a very short time – 99.9999% within a treatment time of 2 minutes. An external drinking water laboratory confirmed that plasma treated water complies with all limits of the German Drinking Water Ordinance.

No. Dirt particles and suspended sediments in the water cannot be removed by cold plasma. For this purpose, a filter is necessary.

Odour management

Odour nuisance is a present topic in our everyday life. Odours deriving from traffic, livestock farming, waste management or gastronomy are often perceived as unpleasant and disturbing. Some countries already reacted and implemented (in addition to the federal emission protection law) an odour emission guideline in order to reduce unpleasant odours. Cold atmospheric plasmas can effectively destroy odours.

The odour-destroying effect of our plasmas is based on the interaction of free electrons in the plasma cocktail and the odour molecules (called Electron-Impact-Dissociation). Free electrons are very reactive and therefore immediately interact with odour molecules. Hence, the odour-destroying effect kicks in within a few nanoseconds.

Yes. The Electron-Impact-Dissociation process relies on free electrons, which break up covalent bonds of odours. Therefore, there is no restriction to certain odours. The elimination of odours such as kitchen odours, sweat and cigarette smoke was already researched.

Basically, existing devices on the market are based on ozone reactions and operate exclusively in the exhaust air mode. Our technology, on the other hand, allows the construction of an air-permeable plasma source and therefore the incorporation into a device that operates in the recirculation mode. In contrast to currently available systems, the odour-destroying effect of our technology is based on the Electron-Impact-Dissociation (independent of ozone).

Yes. It is possible to develop small units (e.g. for domestic air treatment) as well as larger units (e.g. for extractor hoods or treatment of exhaust air in stables).

Air purification

People today spend up to 90% of their lifetime indoors. That is the reason why people’s attention has shifted increasingly to the conditions of the ambient air and, respectively, the pollution by allergens, odour molecules as well as organic and inorganic pollutants. With cold atmospheric plasma we are able to modify and even eliminate a large number of these molecules in such a way that the plasma treated air is much healthier to breathe.

The underlying technology for air purification is the Magnetically Oriented Plasma Source technology (MOPS), which is based on the principle of electron impact dissociation. Pollutants interacting with the electrons generated by the plasma source are dissociated and thus rendered harmless. The various products of this reaction remain in the air and can be bound by combination with a filter system.

This technology can be used in homes and at work (as a small or medium-sized air cleaning device), in motor vehicles of all kinds and in the aerospace industry.

In electron-impact dissociation, the fast electrons of the plasma interact directly with the pollutants. The dissociation of the pollutants requires only a few nanoseconds. In contrast, conventional plasma sources use slow reactive species generated by the plasma, consequently requiring much longer times for the treatment.